283 research outputs found

    Performance of Two 18-Story Steel Moment-Frame Buildings in Southern California During Two Large Simulated San Andreas Earthquakes

    Get PDF
    Using state-of-the-art computational tools in seismology and structural engineering, validated using data from the Mw=6.7 January 1994 Northridge earthquake, we determine the damage to two 18-story steel moment-frame buildings, one existing and one new, located in southern California due to ground motions from two hypothetical magnitude 7.9 earthquakes on the San Andreas Fault. The new building has the same configuration as the existing building but has been redesigned to current building code standards. Two cases are considered: rupture initiating at Parkfield and propagating from north to south, and rupture propagating from south to north and terminating at Parkfield. Severe damage occurs in these buildings at many locations in the region in the north-to-south rupture scenario. Peak velocities of 1 m.s−1 and 2 m.s−1 occur in the Los Angeles Basin and San Fernando Valley, respectively, while the corresponding peak displacements are about 1 m and 2 m, respectively. Peak interstory drifts in the two buildings exceed 0.10 and 0.06 in many areas of the San Fernando Valley and the Los Angeles Basin, respectively. The redesigned building performs significantly better than the existing building; however, its improved design based on the 1997 Uniform Building Code is still not adequate to prevent serious damage. The results from the south-to-north scenario are not as alarming, although damage is serious enough to cause significant business interruption and compromise life safety

    Performance of 18-Story Steel Momentframe Buildings during a large San Andreas Earthquake - A Southern California-Wide End-to-End Simulation

    Get PDF
    The mitigation of seismic risk in urban areas in the United States and abroad is of major concern for all governments. Unfortunately no comprehensive studies have attempted to address this issue in a rigorous, quantitative manner. This study tackles this problem head-on for one typical class of tall buildings in southern California. The approach adopted here can be used as a template to study earthquake risk in other seismically sensitive regions of the world, such as Taiwan, Japan, Indonesia, China, South American countries (Chile, Bolivia, etc.), and the west coast of the United States (in particular, Seattle). In 1857 a large earthquake of magnitude 7.9 [1] occurred on the San Andreas fault with rupture initiating at Parkeld in Central California and propagating in a southeasterly direction over a distance of more than 360 km. Such a unilateral rupture produces signicant directivity toward the San Fernando and Los Angeles basins. Indeed, newspaper reports (Los Angeles Star [2, 3]) of sloshing observed in the Los Angeles river point to long-duration (1-2 min) and long-period (2-8 s) shaking, which could have a severe impact on present-day tall buildings, especially in the mid-height range. To assess the risk posing tall steel moment-frame buildings from an 1857-like earthquake on the San Andreas fault, a nite source model of the magnitude 7.9 November 3, 2002 Denali fault earthquake is mapped on to the San Andreas fault with rupture initiating at Parkeld in Central California and propagating a distance of about 290 km in a south-easterly direction. As the rupture proceeds down south from Parkeld and hits the big bend on the San Andreas fault, it sheds off a signicant amount of energy into the San Fernando valley, generating large amplitude ground motion there. A good portion of this energy spills over into the Los Angeles basin with many cities along the coast such as Santa Monica and Seal Beach and more inland areas going east from Seal beach towards Anaheim experiencing long-duration shaking. In addition, the tail-end of the rupture sheds energy from SH/Love waves into the Baldwin Park-La Puente region, which is bounded by a line of mountains that creates a mini-basin, further amplifying the ground motion. The peak velocity is of the order of 1 m.s in the Los Angeles basin, including downtown Los Angeles, and 2 m.s in the San Fernando valley. Signicant displacements occur in the basins but not in the mountains. The peak displacements are in the neighborhood of 1 m in the Los Angeles basin and 2 m in the San Fernando valley. The ground motion simulation is performed using the spectral element method based seismic wave propagation program, SPECFEM3D. To study the effects of the ground motion simulated at 636 sites (spread across southern California, spaced at about 3.5 km each way), computer models of an existing 18-story steel moment-frame building and a redesigned building with the same conguration (redesigned to current standards using the 1997 Uniform Building Code) are analyzed using the nonlinear structural analysis program, FRAME3D. For these analyses, the building Y direction is aligned with the geographical north direction. As expected, the existing building model fares much worse than the redesigned building model. Fracture occurs in at least 25% of the connections in this building when located in the San Fernando valley. About 10% of connections fracture in the building when located in downtown Los Angeles and the mid-Wilshire district (Beverly Hills), while the numbers are about 20% when it is located in Santa Monica, west Los Angeles, Inglewood , Alhambra, Baldwin Park, La Puente, Downey, Norwalk, Brea, Fullerton, Anaheim and Seal Beach. The peak interstory drifts in the middle-third and bottom-third of the existing building are far greater than the top-third pointing to damage being localized to the lower oors. The localization of damage in the lower oors rather than the upper oors could potentially be worse because of the risk of more oors pancaking on top of each other if a single story gives way. Consistent with the extent of fracture observed, the peak drifts in the existing building exceed 0.10 when located in the San Fernando valley, Baldwin Park and neighboring cities, Santa Monica, west Los Angeles and neighboring cities, Norwalk and neighboring cities, and Seal Beach and neighboring cities, which is well into the postulated collapse regime. When located in downtown Los Angeles and the mid-Wilshire district, the building would barely satisfy the collapse prevention criteria set by FEMA [4] with peak drifts of about 0.05. The performance of the newly designed 18-story steel building is signicantly better than the existing building for the entire region. However, the new building still has signicant drifts indicative of serious damage when located in the San Fernando valley or the Baldwin Park area. When located in coastal cities (such as Santa Monica, Seal Beach etc.), the Wilshire-corridor (west Los Angeles, Beverly Hills, etc.), the mid-city region (Downey, Norwalk, etc.) or the booming Orange County cities of Anaheim and Santa Ana, it has peak drifts of about 0.05, once again barely satisfying the FEMA collapse prevention criteria [5]. In downtown Los Angeles it does not undergo much damage in this scenario. Thus, even though this building has been designed according to the latest code, it suffers damage that would necessitate closure for some time following the earthquake in most areas, but this should be expected since this is a large earthquake and building codes are written to limit the loss of life and ensure "collapse prevention" for such large earthquakes, but not necessarily limit damage. Unfortunately, widespread closures such as this could cripple the regional economy in the event of such an earthquake. A second scenario considered in the study involves the same Denali earthquake source mapped to the San Andreas fault but with rupture initiating in the south and propagating to the north (with the largest amount of slip occurring to the north in Central California) instead of the other way around. The results of such a scenario indicate that ground shaking would be far less severe demonstrating the effects of directivity and slip distribution in dictating the level of ground shaking and the associated damage in buildings. The peak drifts in existing and redesigned building models are in the range of 0.02-0.04 indicating that there is no signicant danger of collapse. However, damage would still be signicant enough to warrant building closures and compromise life safety in some instances. The ground motion simulation and the structural damage modeling procedures are validated using data from the January 17, 1994, Northridge earthquake while the band-limited nature of the ground motion simulation (limited to a shortest period of 2 s by the current state of knowledge of the 3-D Earth structure) is shown to have no signicant effect on the response of the two tall buildings considered here with the use of observed records from the 1999 Chi Chi earthquake in Taiwan and the 2001 Tokachi-Oki earthquake in Japan

    Spectral-Element and Adjoint Methods in Seismology

    Get PDF
    We provide an introduction to the use of the spectral-element method (SEM) in seismology. Following a brief review of the basic equations that govern seismic wave propagation, we discuss in some detail how these equations may be solved numerically based upon the SEM to address the forward problem in seismology. Examples of synthetic seismograms calculated based upon the SEM are compared to data recorded by the Global Seismographic Network. Finally, we discuss the challenge of using the remaining differences between the data and the synthetic seismograms to constrain better Earth models and source descriptions. This leads naturally to adjoint methods, which provide a practical approach to this formidable computational challenge and enables seismologists to tackle the inverse problem

    Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan

    Get PDF
    Topography influences ground motion and, in general, increases the amplitude of shaking at mountain tops and ridges, whereas valleys have reduced ground motions, as is observed from data recorded during and after real earthquakes and from numerical simulations. However, recent publications have focused mainly on the implications for ground motion in the mountainous regions themselves, whereas the impact on surrounding low-lying areas has received less attention. Here, we develop a new spectral-element mesh implementation to accommodate realistic topography as well as the complex shape of the Taipei sedimentary basin, which is located close to the Central Mountain Range in northern Taiwan. Spectral-element numerical simulations indicate that high-resolution topography can change peak ground velocity (PGV) values in mountainous areas by ±50% compared to a half-space response. We further demonstrate that large-scale topography can affect the propagation of seismic waves in nearby areas. For example, if a shallow earthquake occurs in the I-Lan region of Taiwan, the Central Mountain Range will significantly scatter the surface waves and will in turn reduce the amplitude of ground motion in the Taipei basin. However, as the hypocenter moves deeper, topography scatters body waves, which subsequently propagate as surface waves into the basin. These waves continue to interact with the basin and the surrounding mountains, finally resulting in complex amplification patterns in Taipei City, with an overall PGV increase of more than 50%. For realistic subduction zone earthquake scenarios off the northeast coast of Taiwan, the effects of topography on ground motion in both the mountains and the Taipei basin vary and depend on the rupture process. The complex interactions that can occur between mountains and surrounding areas, especially sedimentary basins, illustrate the fact that topography should be taken into account when assessing seismic hazard

    The spectral-element method in seismology

    Get PDF

    Case Studies of Damage to Tall Steel Moment-Frame Buildings in Southern California during Large San Andreas Earthquakes

    Get PDF
    On 9 January 1857, a large earthquake of magnitude 7.9 occurred on the San Andreas fault, with rupture initiating at Parkfield in central California and propagating in a southeasterly direction over a distance of more than 360 km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. Indeed, newspaper reports of sloshing observed in the Los Angeles river point to long-duration (1–2 min) and long-period (2–8 sec) shaking. If such an earthquake were to happen today, it could impose significant seismic demand on present-day tall buildings. Using state-of-the-art computational tools in seismology and structural engineering, validated using data from the 17 January 1994, magnitude 6.7 Northridge earthquake, we determine the damage to an existing and a new 18- story steel moment-frame building in southern California due to ground motion from two hypothetical magnitude 7.9 earthquakes on the San Andreas fault. Our study indicates that serious damage occurs in these buildings at many locations in the region in one of the two scenarios. For a north-to-south rupture scenario, the peak velocity is of the order of 1 m•sec^(−1) in the Los Angeles basin, including downtown Los Angeles, and 2 m•sec^(−1) in the San Fernando valley, while the peak displacements are of the order of 1 m and 2 m in the Los Angeles basin and San Fernando valley, respectively. For a south-to-north rupture scenario the peak velocities and displacements are reduced by a factor of roughly 2

    Accelerating a 3D finite-difference wave propagation code using GPU graphics cards

    Get PDF
    International audienceWe accelerate a three-dimensional finite-difference in the time domain (FDTD) wave propagation code by a factor between about 20 and 60 compared to a serial implementation using Graphics Processing Unit (GPU) computing on NVIDIA graphics cards with the CUDA programming language. We describe the implementation of the code in CUDA to simulate the propagation of seismic waves in a heterogeneous elastic medium. We also implement Convolution Perfectly Matched Layers (CPMLs) on the graphics cards to efficiently absorb outgoing waves on the fictitious edges of the grid. We show that the code that runs on a graphics card gives the expected results by comparing our results to those obtained by running the same simulation on a classical processor core. The methodology that we present can be used for Maxwell's equations as well because their form is similar to that of the seismic wave equation written in velocity vector and stress tensor

    Étude d'algorithmes de restauration d'images sismiques par optimisation de forme non linéaire et application à la reconstruction sédimentaire.

    Get PDF
    Nous présentons une nouvelle méthode pour la restauration d'images sismiques. Quand on l'observe, une image sismique est le résultat d'un système de dépôt initial qui a été transformé par un ensemble de déformations géologiques successives (flexions, glissement de la faille, etc) qui se sont produites sur une grande période de temps. L'objectif de la restauration sismique consiste à inverser les déformations pour fournir une image résultante qui représente le système de dépôt géologique tel qu'il était dans un état antérieur. Classiquement, ce procédé permet de tester la cohérence des hypothèses d'interprétations formulées par les géophysiciens sur les images initiales. Dans notre contribution, nous fournissons un outil qui permet de générer rapidement des images restaurées et qui aide donc les géophysiciens à reconnaître et identifier les caractéristiques géologiques qui peuvent être très fortement modifiées et donc difficilement identifiables dans l'image observée d'origine. Cette application permet alors d'assister ces géophysiciens pour la formulation d'hypothèses d'interprétation des images sismiques. L'approche que nous introduisons est basée sur un processus de minimisation qui exprime les déformations géologiques en termes de contraintes géométriques. Nous utilisons une approche itérative de Gauss-Newton qui converge rapidement pour résoudre le système. Dans une deuxième partie de notre travail nous montrons différents résultats obtenus dans des cas concrets afin d'illustrer le processus de restauration d'image sismique sur des données réelles et de montrer comment la version restaurée peut être utilisée dans un cadre d'interprétation géologique.We present a new method for seismic image restoration. When observed, a seismic image is the result of an initial deposit system that has been transformed by a set of successive geological deformations (folding, fault slip, etc) that occurred over a large period of time. The goal of seismic restoration consists in inverting the deformations to provide a resulting image that depicts the geological deposit system as it was in a previous state. With our contribution, providing a tool that quickly generates restored images helps the geophysicists to recognize geological features that may be too strongly altered in the observed image. The proposed approach is based on a minimization process that expresses geological deformations in terms of geometrical constraints. We use a quickly-converging Gauss-Newton approach to solve the system. We provide results to illustrate the seismic image restoration process on real data and present how the restored version can be used in a geological interpretation framework.PAU-BU Sciences (644452103) / SudocSudocFranceF

    Spectral-Element Moment Tensor Inversions for Earthquakes in Southern California

    Get PDF
    We have developed and implemented an automated moment tensor inversion procedure to determine source parameters for southern California earthquakes. The method is based upon spectral-element simulations of regional seismic wave propagation in an integrated 3D southern California velocity model. Sensitivity to source parameters is determined by numerically calculating the Fréchet derivatives required for the moment tensor inversion. We minimize a waveform misfit function, and allow limited time shifts between data and corresponding synthetics to accommodate additional 3D heterogeneity not included in our model. The technique is applied to three recent southern California earthquakes: the 9 September 2001, M_L 4.2 Hollywood event, the 22 February 2003, M_L 5.4 Big Bear event, and the 14 December 2001, M_L 4.0 Diamond Bar event. Using about half of the available three-component data at periods of 6 sec and longer, we obtain focal mechanisms, depths, and moment magnitudes that are generally in good agreement with estimates based upon traditional body-wave and surface-wave inversions
    corecore